BAII Plus
 极 Texas Instruments

BUSTNESS ANALYST

QUIT	SET	DEL	INS
CPT	ENTER	\uparrow	\downarrow

	$C F$	NPV	IRR	\rightarrow
XP/Y	FIY	AMORT	BGN	CLR TVM
N	$1 / Y$	PV	PMT	FV
K				RAND
$\%$	\sqrt{x}	x^{2}	$1 / x$	\div

Hyp	$\sin \cos$	TaN
	$y x$	x

$\frac{e^{x}}{1 N}$ DATA STAT BOND

ROUND
STO

TI BA II Plus

calculator Guide + Workbook + Video

TI BA II PLUS CALCULATOR MANUAL FOR FRM AND CFA

1.1 TURING ON THE CALCULATOR

Press ON OFF button

Calculator comes with APD automatic power down feature, which turns off the calculator after 5 min . If calculator is APD off, then calculations and data is not lost. Simply press on and you can resume work.

1.2 SECOND FUNCTION

Press 2 nd key to get calculator into second function. Second functions are functions available on button (written above every button).

To cancel 2 nd just press same key again.
1.3 SETTING CALCULATOR FORMATS

CHANGING DECIMALS -

press $2^{\text {nd }}>$ Format. You will see Dec on display. Press number key to set decimal. To set calculator to 9 decimals use following
$2^{\text {nd }}>$ Format $>9>$ Enter

CHANGING NUMBER SEPARATOR FOR CURRENCY

$2^{\text {nd }}>$ Format $>$ Press down button 3 times $>2^{\text {nd }}$ Set $>$ will change US to Euro
US $1,000.00$
Euro 1.000,00

2.1 TIME VALUE OF MONEY

Used for present value, future value, PMT or I/Y calculation.
CALCULATION 1: CALCULATE PRESENT VALUE.

Assuming Annual	Semi Annual	Quarterly
$\begin{aligned} & \text { PMT }=100 \\ & \mathrm{I} / \mathrm{Y}=\text { periodic Yield }= \\ & 15 \% \\ & \mathrm{FV}=1000 \\ & \mathrm{~N}=10 \text { Period } \end{aligned}$	$\begin{aligned} & \text { PMT }=50 \\ & \mathrm{I} / \mathrm{Y}=7.5 \% \\ & \mathrm{FV}=1000 \\ & \mathrm{~N}=20 \text { Period } \end{aligned}$	$\begin{aligned} & \text { PMT }=25 \\ & \mathrm{I} / \mathrm{Y}=3.75 \% \\ & \mathrm{FV}=1000 \\ & \mathrm{~N}=40 \text { Period } \end{aligned}$
$\begin{aligned} & \text { Entering Values } \\ & 100>\text { PMT } \\ & 15>\text { I/Y } \\ & 1000>\text { FV } \\ & 10>\text { N } \\ & \text { CPT }>\text { PV }>-749.06 \end{aligned}$	Entering Values $\begin{array}{\|l} 50>\text { PMT } \\ 7.5>\mathrm{I} / \mathrm{Y} \\ 1000>\mathrm{FV} \\ 20>\mathrm{N} \\ \mathrm{CPT}>\mathrm{PV}>-745.13 \end{array}$	Entering Values $\begin{aligned} & 25>\text { PMT } \\ & 3.75>\text { I/Y } \\ & 1000>\text { FV } \\ & 40>\mathrm{N} \\ & \mathrm{CPT}>\text { PV }>-743.11 \end{aligned}$

CALCULATION OF I/Y - YIELD CALCULATION

Assuming Annual	Semi Annual	Quarterly
$\begin{aligned} & \text { PMT }=100 \\ & \text { FV }=1000 \\ & \text { N = 10 Period } \\ & \text { PV }=-780 \end{aligned}$	$\begin{aligned} & \mathrm{PMT}=50 \\ & \mathrm{FV}=1000 \\ & \mathrm{~N}=20 \text { Period } \\ & \mathrm{PV}=-780 \end{aligned}$	$\begin{aligned} & \mathrm{PMT}=25 \\ & \mathrm{FV}=1000 \\ & \mathrm{~N}=40 \text { Period } \\ & \mathrm{PV}=-780 \end{aligned}$
Entering Values $\begin{aligned} & 100>\text { PMT } \\ & 1000>\text { FV } \\ & 10>\mathrm{N} \\ & 780>\text { PV } \\ & \text { CPT }>\mathrm{I} / \mathrm{Y}=14.26 \% / \\ & \text { Period } \end{aligned}$	Entering Values $\begin{aligned} & 50>\text { PMT } \\ & 1000>\text { FV } \\ & 20>\mathrm{N} \\ & 780>\text { PV } \\ & \text { CPT }>\mathrm{I} / \mathrm{Y}=7.09 \% / \\ & \text { Period } \end{aligned}$	Entering Values $\begin{aligned} & 25>\mathrm{PMT} \\ & 1000>\mathrm{FV} \\ & 40>\mathrm{N} \\ & 780>\mathrm{PV} \\ & \mathrm{CPT}>\mathrm{I} / \mathrm{Y}=3.53 \% / \\ & \text { Period } \end{aligned}$

I/Y is periodic. Hence, we need to multiply it with number of periods in a year to get rate with periodic compounding.
2.2 INTEREST RATE COMPOUNDING PERIOD MANIPULATION

Statement	Meaning	CC Conversion (A)	Yearly effective rate conversion
12\% Annual rate	Meaning 12\% paid annually	$\begin{aligned} & 0.12>+1>\operatorname{Ln}>X \\ & 1> \end{aligned}$	NA
12\% Semiannual rate	6\% Paid in every six months	$\begin{aligned} & 0.12 / 2>+1>\operatorname{Ln}> \\ & \mathrm{X} 2> \end{aligned}$	$\begin{aligned} & \mathrm{A}>2^{\text {nd }} \operatorname{Ln}>. \\ & 1> \end{aligned}$
12\% Quarterly rate	4\% Paid in every quarter	$\begin{aligned} & 0.12 / 4>+1>\operatorname{Ln}> \\ & \text { X } 4> \end{aligned}$	$\begin{aligned} & \text { A> } 2^{\text {nd }} \operatorname{Ln}>. \\ & 1> \end{aligned}$
12\% Monthly rate	1\% Paid monthly	$\begin{aligned} & 0.12 / 12>+1>\operatorname{Ln}> \\ & \text { X } 12 \end{aligned}$	$\begin{aligned} & \mathrm{A}>2^{\text {nd }} \operatorname{Ln}>. \\ & 1> \end{aligned}$
12\% Continuously compounded rate.	Paid on momentarily basis. Can not be used directly in any calculation.	NA	$\begin{aligned} & 0.12>2^{\text {nd }} \operatorname{Ln} \\ & >-1> \end{aligned}$

3.1 STATISTICS: PERMUTATION COMBINATION AND BINOMIAL DISTRIBUTION

PERMUTATION AND COMBINATION

Permutation: Total number of ways to select from set when order matters.
Formula: $\mathrm{P}(\mathrm{n}, \mathrm{r})=\mathrm{n}$! / ($\mathrm{n}-\mathrm{r}$)!
Example: Find out total number of ways to award 3 medals (Gold, silver and Bronze) to 20 players.

Calculator: $20>2^{\text {nd }} n P r>3>=>6840$
Combination: Total number of ways to select from the set when order doesn't matter.

Formula: C(n,r) = n! / r! * (n-r)!
Example: Find out total number of ways to gift 3 to 20 kids.

Calculator: $20>2^{\text {nd }} \mathrm{nCr}>3=>1140$

BINOMIAL DISTRIBUTION

Class Illustration:
Probability of selecting a red ball from the sac of 10 random balls is 0.20 . What is the probability of getting 4 Red balls in random draw.
$\mathrm{N}=10, \mathrm{x}=4$ and probability of success is 0.20 .
$n C r X p \wedge x X(1-p)^{\wedge}(n-x)$.
$10 \mathrm{C} 4 \mathrm{X} 0.20{ }^{\wedge} 4 \mathrm{X}(1-0.20)^{\wedge}(10-4)$

HOMEWORK:
Currently 20 associates are working in a risk management team our of which 5 are FRM. CRO wants to form a committee of 6 with 2 FRMs. What is the probability of CRO is able to form a committee as per the requirement if members are randomly selected?

3.2 BASIC STATISTICS AND PROBABILITY (WATCH VIDEO)

BASIC STATISTICS ONE VARIABLE

$\mathrm{X}=12,15,-19,5,-8$
Using calculator, you can calculate: mean, population standard deviation, sample standard deviation.

BASIC STATISTICS ONE VARIABLE AND PROBABILITY (1-V)

X	Prob
12	0.20
15	0.30
-19	0.10
-8	0.40

Using calculator, you can calculate mean, population standard deviation, sample standard deviation.

Note: Always enter probability in \% form in Y value. Like 20 for 0.20. and Set calculator to 1 V function.

CORRELATION AND LINEAR REGRESSION USING TWO VARIABLES

X	Y
12	55
15	65
-19	-70
-8	80

Using calculator, you can calculate mean, population standard deviation, sample standard deviation for both variables and correlation. It also provides intercept and slope for linear regression.

TIPS AND TRICKS

SUGGESTIONS

- Try and practice limited number of functions.
- If one task can be done using two or more functions then decide one function for the task to avoid confusion.
- Revise all functions before exam, even small mistake in entering data can cause trouble.

TIME SAVING TRICK STORE AND BRACKETS

For the complex calculations prefer store and bracket function.

